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Background

▶ Language is the advanced form of
human intelligence, and language
intelligence is an important part of
artificial intelligence.

▶ Linguistics is considered to be one of
the important theoretical foundations of
artificial intelligence.

▶ In the history of artificial intelligence,
linguistics has been deeply involved
and played an important role.

▶ In the era of LLMs, it is necessary to
re-examine the relation between
linguistics and artificial intelligence.

▶ This talk is my attempt on this topic, as
a long-term practitioner of AI,
especially NLP, for decades.
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Timeline

1950 Turing Test

1954 First machine translation experiment

1957 Basic idea of distributional semantic (Firth)

1957 Syntactic Structure (Chomsky), transformational generative grammar

1959 The Foundation of Structural Syntax (Tesnière), dependent grammar

1962 Dartmouth Conference, Birth of Artificial Intelligence

1965 Aspects of Syntactic Theory (Chomsky)

1966 ALPAC Report, Funds in MT cut drastically

1967 Brown Corpus

1970 1970s-1980s Expert systems

1971 PoS tagging

1978 ARIAN78 Analysis-Transfer-Generation MT System

1984 CYC Encyclopedia Knowledge Base Project

1985 WordNet

1985 GPSG

1987 HPSG and LFG

1987 1st MUC, Information Extraction

1992 Penn Treebank

1993 Penn Discourse Treebank

1994 SCFG

1994 IBM SMT Models 1-5

1997 IBM Deep Blue Beated Kasparov

2000 FrameNet

2002 Semantic Role Labeling Task

2003 Phrase-based SMT

2005 PropBank

2006 Syntax-based SMT

2007 Dbpedia, Freebase

2011 IBM Watson beated Human in Jeopardy

2013 Word Embedding

2013 Seq2Seq Neural MT

2016 AlphaGo beated Lee Sedol

2017 Transformer Model

2018 Pre-trained Models: BERT, GPT etc.

2020 GPT-3 175B LLM

2022 ChatGPT
2 total: 30
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Timeline - The Early AI Stage

1950 Turing Test

1954 First machine translation experiment

1957 Basic idea of distributional semantic (Firth)

1957 Syntactic Structure (Chomsky), transformational generative grammar

1959 The Foundation of Structural Syntax (Tesnière), dependent grammar

1962 Dartmouth Conference, Birth of Artificial Intelligence

1965 Aspects of Syntactic Theory (Chomsky)

1966 ALPAC Report, Funds in MT cut drastically

1967 Brown Corpus

1970 1970s-1980s Expert systems

1971 PoS tagging

1978 ARIAN78 Analysis-Transfer-Generation MT System

1984 CYC Encyclopedia Knowledge Base Project

1985 WordNet

1985 GPSG

1987 HPSG and LFG

1987 1st MUC, Information Extraction

1992 Penn Treebank

1993 Penn Discourse Treebank

1994 SCFG

1994 IBM SMT Models 1-5

1997 IBM Deep Blue Beated Kasparov

2000 FrameNet

2002 Semantic Role Labeling Task

2003 Phrase-based SMT

2005 PropBank

2006 Syntax-based SMT

2007 Dbpedia, Freebase

2011 IBM Watson beated Human in Jeopardy

2013 Word Embedding

2013 Seq2Seq Neural MT

2016 AlphaGo beated Lee Sedol

2017 Transformer Model

2018 Pre-trained Models: BERT, GPT etc.

2020 GPT-3 175B LLM

2022 ChatGPT3 total: 30



Noam Chomsky’s Linguistic Theory

▶ Chomskys Hierarchy of Formal Languages
▶ Generative Grammar
▶ Aspects Model, Standard Theory

▶ Deep Structure and Surface Structure
▶ Government and Binding Theory

▶ X̄ Theory
▶ θ Theory
▶ Case Theory
▶ Binding Theory
▶ Bounding Theory
▶ Control Theory
▶ Government Theory

▶ Minimalist Program

4 total: 30



Distributed Semantics and its Influence

Firth, 1957: You shall know a word by the company it keeps. 你可以通过其伴随词来了解一个词的意思。

Bag of Words
词袋

N-gram LM
N元语言模型

TF-IDF
TF-IDF

Word Embedding
词嵌入

Neural LM
神经语言模型
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Timeline - The Symbolic AI Stage

1950 Turing Test

1954 First machine translation experiment

1957 Basic idea of distributional semantic (Firth)

1957 Syntactic Structure (Chomsky), transformational generative grammar

1959 The Foundation of Structural Syntax (Tesnière), dependent grammar

1962 Dartmouth Conference, Birth of Artificial Intelligence

1965 Aspects of Syntactic Theory (Chomsky)

1966 ALPAC Report, Funds in MT cut drastically

1967 Brown Corpus

1970 1970s-1980s Expert systems

1971 PoS tagging

1978 ARIAN78 Analysis-Transfer-Generation MT System

1984 CYC Encyclopedia Knowledge Base Project

1985 WordNet

1985 GPSG

1987 HPSG and LFG

1987 1st MUC, Information Extraction

1992 Penn Treebank

1993 Penn Discourse Treebank

1994 SCFG

1994 IBM SMT Models 1-5

1997 IBM Deep Blue Beated Kasparov

2000 FrameNet

2002 Semantic Role Labeling Task

2003 Phrase-based SMT

2005 PropBank

2006 Syntax-based SMT

2007 Dbpedia, Freebase

2011 IBM Watson beated Human in Jeopardy

2013 Word Embedding

2013 Seq2Seq Neural MT

2016 AlphaGo beated Lee Sedol

2017 Transformer Model

2018 Pre-trained Models: BERT, GPT etc.

2020 GPT-3 175B LLM

2022 ChatGPT6 total: 30



Penn Tree Bank and Its Derived Corpus

1992 Penn Treebank
First published in 1992, containing about 1 million words from the Wall Street Journal
text , marked with syntactic structure.

2002 RST Discourse Treebank
Rhetoric Structure Theory (RST) Discourse Tree Bank, containing 385 articles from
Penn Treebank and annotating discourse structures in the RST framework, as well
as artificially generated excerpts and abstracts associated with source documents.

2002 Penn Chinese Treebank
In 2002, a Large-Scale Annotated Chinese Corpus was released to analyze Chinese
text based on the syntax annotation method of Penn Treebank.

2004 NomBank Released in 2004, providing semantic role annotations for noun phrases.

2005 PropBank Released in 2005, providing semantic role annotations for English verbs.

2006 TimeBank Released in 2006, providing detailed semantic annotations for time expressions.

2008
Penn Discourse Treebank (PDTB)
2.0

Released in 2008, containing a corpus of dialogue text, providing syntactic and
semantic structural annotations at the discourse level.

2015 Universal Dependencies
Released version 1.0 in 2015, a multi-lingual syntactic annotation project, partly
based on Penn Treebank.

7 total: 30



Penn Tree Bank

8 total: 30



PropBank

Combination Strategies for Semantic Role Labeling

The luxury auto maker last year sold 1,214 cars in the U.S.

PPNP

VPNPNP

PA0 AM−TMP AM−LOC
Predicate

A1
ObjectAgent

S

Temporal
Marker

Locative
Marker

Figure 1: Sample sentence from the PropBank corpus.

The proposed combination strategies are general and do not depend on the way in which
candidate arguments are collected. We empirically prove it by experimenting not only
with individual SRL systems developed in house, but also with the 10 best systems at the
CoNLL-2005 shared task evaluation.

1.3 Contribution

The work introduced in this paper has several novel points. To our knowledge, this is
the first work that thoroughly explores an inference model based on meta-learning (the
second and third inference models introduced) in the context of SRL. We investigate meta-
learning combination strategies based on rich, global representations in the form of local
and global features, and in the form of structural constraints of solutions. Our empirical
analysis indicates that these combination strategies outperform the current state of the
art. Note that all the combination strategies proposed in this paper are not “re-ranking”
approaches (Haghighi, Toutanova, & Manning, 2005; Collins, 2000). Whereas re-ranking
selects the overall best solution from a pool of complete solutions of the individual models,
our combination approaches combine candidate arguments, or incomplete solutions, from
different individual models. We show that our approach has better potential, i.e., the upper
limit on the F1 score is higher and performance is better on several corpora.

A second novelty of this paper is that it performs a comparative analysis of sev-
eral combination strategies for SRL, using the same framework −i.e., the same pool of
candidates− and the same evaluation methodology. While a large number of combination
approaches have been previously analyzed in the context of SRL or in the larger context of
predicting structures in natural language texts −e.g., inference based on constraint satis-
faction (Koomen, Punyakanok, Roth, & Yih, 2005; Roth & Yih, 2005), inference based in
local learning (Màrquez et al., 2005), re-ranking (Collins, 2000; Haghighi et al., 2005) etc.−
it is still not clear which strategy performs best for semantic role labeling. In this paper we

107
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FrameNetIntroduction to
FrameNet

Johannes Dellert

Introduction

What is FrameNet?

Who is behind this?

Coverage and size of
the database

Motivation

Background

Semantic Frames

Granularity

Profiling

Frame Elements vs.
Thematic Roles

Frame Inheritance

Frame Hierarchy

Frame Composition

Annotation

Preparation

Subcorpus Extraction

Annotation

Entry Writing

Usage in NLP

Word Sense
Disambiguation

Machine Translation

Information
Extraction

Question Answering

References

Frame Hierarchy

I since we have multiple inheritance, the resulting structure is
not a tree, but still a directed graph

I this gives an impression of the Revenge frame’s larger vicinity:

RUSSIA has promised to begin pulling its troops out of Georgia at midday today.

Figure 7 . The example sentence with concepts and predicates expanded

describing resources as a labeled graph (Antoniou and Van Harmelen, 2004). The ‘resources’
or nodes in this case are the words from the dependency tree. They are connected together
using the syntactic dependencies are produced by CoreNLP. The attributes of the words,
such as lemma and POS, are included in the graph using edges from the word to a literal
values.

The graph transoformation rules are expressed in SPARQL, a W3C standard query
language for RDF. Such rules consists of a graph pattern that needs to be matched, which
can include variables and fairly complicated path structures. For example, the rule for
detecting the Georgian goal frame that Russia withdraws is formalized as follows:

INSERT {?x :function "Georgian Goal: Russia withdraws"}
WHERE {?x :concept "withdraw".

?x :pred*/:subj/:concept "russia". }

In English, the rule stats that a ‘function’ relation should be inserted from a node
?x, if that node is identified as the concept [withdraw], and it is connected to another node
with the concept [russia] through a ‘subject’ relation and zero or more ‘pred’ relations. For
applying rules in this query language, multiple freely available toolkits exist, including the
Fuseki toolkit used in this paper 4 Finally, the ‘glue code’ to parse the sentences, apply the

4http://jena.apache.org/documentation/serving_data/

Syntax of International Frame Building 16

10 total: 30



Dependency Grammar、Valence Grammar, Combinatorial
Category Grammar（CCG）
▶ Dependency grammar is the simplest form of grammar: it

only needs to establish dependencies between words,
without marking words or phrases linguistically.

▶ Valence grammar introduces the concept of "valence"
borrowed from chemistry into languistics, to describe the
semantics of words. The valence description of words can
be a good supplement to the dependency grammar.

▶ Combinational category grammar gives each word a
complex category representation, while the combination of
words is as simple as an eliminating rule.

▶ All the above three grammars belong to lexicalized
grammars, with which, we describe languages mainly
using lexicons, rather than constructing complex
combination rules like in phrase structure grammar.

▶ Because of their simple forms, these grammars have been
studied and applied in NLP. In particular, dependency
grammar is one of the most widely used language analysis
tools.

训练

get_gold_moves

简介

和成分句法分析不同，依存句法分析并不关注短语成分，而是直接关注词本身以及词之间的二元依存关

系。比如下图所示，句子的中心词是动词prefer，它依赖于一个主语(nsub)”I”和一个直接宾语(dobj)flight。
而flight依赖于定冠词(det)”The”、名词修饰词(nmod)”morning”和名词修饰词”Denvor”。而Denvor依赖
于”through”。没有任何词依赖prefer，但是习惯上构造一个特殊的词”root”，它依赖于”prefer”。

图：依存句法分析示例

如下图所示，和成分句法分析相比，依存句法分析更加直接的分析出句子的主语谓语等成分。另外一点，

依存句法分析的结果里，词的关系更加直接。比如上面的例子中动词prefer的直接宾语是flight，在依存句法
分析树中，直接有prefer到flight的边，而在成分句法分析中这种关系是不直接的（但是也是有的）。

2024/6/28 07:46 依存句法分析 - 李理的博客

https://fancyerii.github.io/books/depparser/ 2/22

Samples of Dependency Trees

Samples of CCG Parsing
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Unification-based Grammars
▶ From 1980s to 1990s, a number of new grammar

theories have been put forward in computational
linguistics, including lexical functional grammar
(LFG), functional unification grammar (FUG),
generalized phrase structure grammar (GPSG),
head-driven phrase structure grammar (HPSG),
etc.

▶ A common feature of these grammars is that they
all use the form of complex feature sets +
unification operations, so they are also called
"unification-based grammars".

▶ Similar to dependency grammars,
unification-based grammars do not use complex
composition rules, but only use lexicons to
describe the use of words. The complex feature
sets can describe the linguistic features of words
in details, and the unification operation has the
advantages of order independence and
monotony. This kind of grammar once received a
lot of attentions and had a great influence.

THE CHALLENGE OF ARABIC FOR NLP/MT 
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- C-structure: constituent structure is represented in terms of context-free grammar trees 
and captures word order and the hierarchical grouping of phrases. Nodes in c-structure 
trees are annotated with f-structure equations. 
 
- F-structure: functional structure represents abstract syntactic information, such as 
grammatical functions (e.g. SUBJ) and morpho-syntactic properties (e.g. TENSE) 
which are encoded as attribute-value matrices (AVMs) approximating to predicate-
argument-modifier relations or dependencies. 
 
C-structure nodes are annotated with f-structure equations containing up (↑) and down 

(↓) arrows (meta-variables). Up-arrows refer to the f-structure associated with the 
immediately dominating tree node, while down-arrows (↓) refer to the local node. Each 
occurrence of meta-variables is instantiated using a unique identifier associated with the 
node to which the meta-variable refers, which allows a set of equations (f-descriptions)  

 
FIGURE 1: C-structure annotated with f-structure equations and the resulting f-

structure for the sentence John Loves Mary. 
 
to be created from the annotated c-structure. These equations, if satisfiable, produce an 
f-structure. Figure 1 provides the c-structure for the sentence “John loves Mary” 
annotated with f-structure equations and the resulting f-structure.  
 

3. CONSTRUCTION OF DCU 250 

3.1 Data Preparation 
 
The 23,611 trees of the ATB are available in two forms, vowelled (with diacritics) and 
unvowelled (without diacritics). Diab et al. (2005) split the ATB into three parts: a 
training set of 18,970 trees (~80%), a development set of 2,304 trees (~10%) and a test 
set of 2,337 trees (~10%). The first step in constructing the DCU 250 was to randomly 
select trees from the ATB test set of Diab et al. (2005). Of the 250 randomly selected 

Samples of LFG Parsing
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Syntatic Parsing Algorithms
CFG Dependency

Deterministic
（for Compilers）

Recursive Descend LL（Top-down）
Shift-Reduce LR（Bottom-up）

Non-deterministic、
Without probabilities

Recursive Descend、Shift-Reduce、
Chart、CYK、Tomita

Probabilistic Viterbi（PCFG Inference）
Inside-Outside（PCFG Training）

Transition（Yamada、Nivre）
Graph-based（MST）

1. Starting from [4,5] i.e ‘Houston’, looking at rules, it can be obtained using NP (10th rule,
CNF) & Proper Noun(Proper Noun →Houston).

2. Main things start when we move a step upward i.e to [3,4] representing ‘through’. It can be
obtained using Prep(Prep/Preposition →Through).

3. We must remember that as we move to the right-hand side of a row, we need to append
the coming words to the words already filled in the left-hand side in the same sequence and
find rules producing that group of words as a whole.

4. Hence at [3,5], we need to figure out the rules generating ‘through Houston’ & not only
‘Houston’. Now for this, we need some help from [3,4] representing ‘through’ & [4,5]
representing ‘Houston’. What we will aim for is to find Tags @ [3,4](Prep) X Tags @ [4,5] (NP,
Proper Noun). Hence leading to the formation of pairs ‘Prep Np’ & ‘Prep Proper-Noun’. Now,
if any of these can be obtained from the above productions, fill those rules in [3,5]. If you
look, Prep NP can be generated using the 21st rule i.e PP →Prep NP. Hence [3,5]=PP

5. Moving to [2,3], ‘flight’ can be obtained using the 12th rule (Nominal →flight) & Noun
→flight. Moving to [2,4], we will try to produce ‘flight through’ For which we will locate tag
pairs produced by crossing [2,3](Noun, Nominal) with [3,4](Prep). Hence find a rule
producing ‘Nominal Prep’ or ‘Noun Prep’. There is no rule!!! leave it blank.

6. Moving to [2,5]. We need to figure out a ‘flight through Houston’. Here, we will try
figuring out tag groups formed by [2,3](flight) x [3,5](through Houston) or [2,4](flight
through) x [4,5](Houston). We must understand that we are trying to make the current
sentence segment using previously drawn sentence segments. Hence, ‘flight through

2024/6/28 10:13 Syntactic / Constituency Parsing using the CYK algorithm in NLP | by Mehul Gupta | Data Science in your pocket | Medium

https://medium.com/data-science-in-your-pocket/syntactic-constituency-parsing-using-the-cyk-algorithm-in-nlp-eff9c2912b09 12/25

CYK Parsing
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VP → V NP •

VP → V • NP

Chart Parsing

0 ◦ ◦ ◦ ◦ ◦ ◦ ◦

1 S r3 [The President will] • • ◦ ◦ ◦ ◦ ◦

2 S r1 [The President will] [visit] • • ◦ ◦ ◦ ◦ •

3 Rl [The President will visit] • • ◦ ◦ ◦ ◦ •

4 S r4 [The President will visit] [London in April] • • • • • • •

5 Rr [The President will visit London in April] • • • • • • •

step action rule stack coverage

Figure 2: Shift-reduce parsing with string-to-dependency phrase pairs. For each state, the algorithm
maintains a stack to store items (i.e., well-formed dependency structures). At each step, it chooses one
action to extend a state: shift (S), reduce left (Rl), or reduce right (Rr). The decoding process terminates
when all source words are covered and there is a complete dependency tree in the stack.

(b) floating: sibling nodes of a common
head, but the head itself is unspecified
or floating. Each of the siblings must be
a complete constituent.

2. ill-formed: neither fixed nor floating.

We further distinguish between left and right
floating structures according to the position of
head. For example, as “The President will” is the
left dependant of its head “visit”, it is a left floating
structure.

To integrate the advantages of phrase-based
and string-to-dependency models, we propose a
shift-reduce algorithm for phrase-based string-to-
dependency translation.

Figure 2 shows an example. We describe a state
(i.e., parser configuration) as a tuple 〈S, C〉 where
S is a stack that stores items and C is a cover-
age vector that indicates which source words have
been translated. Each item s ∈ S is a well-formed
dependency structure. The algorithm starts with
an empty state. At each step, it chooses one of the
three actions (Huang et al., 2009) to extend a state:

1. shift (S): move a target dependency structure
onto the stack;

2. reduce left (Rl): combine the two items on
the stack, st and st−1 (t ≥ 2), with the root of
st as the head and replace them with a com-
bined item;

3. reduce right (Rr): combine the two items on
the stack, st and st−1 (t ≥ 2), with the root
of st−1 as the head and replace them with a
combined item.

The decoding process terminates when all source
words are covered and there is a complete depen-
dency tree in the stack.

Note that unlike monolingual shift-reduce
parsers (Nivre, 2004; Zhang and Clark, 2008;
Huang et al., 2009), our algorithm does not main-
tain a queue for remaining words of the input be-
cause the future dependency structure to be shifted
is unknown in advance in the translation scenario.
Instead, we use a coverage vector on the source
side to determine when to terminate the algorithm.

For an input sentence of J words, the number of
actions is 2K − 1, where K is the number of rules
used in decoding. 1 There are always K shifts and

1Empirically, we find that the average number of stacks
for J words is about 1.5 × J on the Chinese-English data.

3

Shirt-Reduce Dependency Parsing
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Timeline - The Statistical AI Stage

1950 Turing Test

1954 First machine translation experiment

1957 Basic idea of distributional semantic (Firth)

1957 Syntactic Structure (Chomsky), transformational generative grammar

1959 The Foundation of Structural Syntax (Tesnière), dependent grammar

1962 Dartmouth Conference, Birth of Artificial Intelligence

1965 Aspects of Syntactic Theory (Chomsky)

1966 ALPAC Report, Funds in MT cut drastically

1967 Brown Corpus

1970 1970s-1980s Expert systems

1971 PoS tagging

1978 ARIAN78 Analysis-Transfer-Generation MT System

1984 CYC Encyclopedia Knowledge Base Project

1985 WordNet

1985 GPSG

1987 HPSG and LFG

1987 1st MUC, Information Extraction

1992 Penn Treebank

1993 Penn Discourse Treebank

1994 SCFG

1994 IBM SMT Models 1-5

1997 IBM Deep Blue Beated Kasparov

2000 FrameNet

2002 Semantic Role Labeling Task

2003 Phrase-based SMT

2005 PropBank

2006 Syntax-based SMT

2007 Dbpedia, Freebase

2011 IBM Watson beated Human in Jeopardy

2013 Word Embedding

2013 Seq2Seq Neural MT

2016 AlphaGo beated Lee Sedol

2017 Transformer Model

2018 Pre-trained Models: BERT, GPT etc.

2020 GPT-3 175B LLM

2022 ChatGPT14 total: 30



The Rise of Statistical Methods

▶ Linguistic-based methods (usually called rule-based methods) encountered
bottlenecks in system performance when facing real language data in complex
environments and are difficult to improve.

▶ In the early 1990s, IBM began to borrow statistical technologies from speech
recognition to machine translation and carried out statistical machine translation
research, which opened a new era of statistical NLP:

▶ At the time, Fred Jelinek, head of machine translation at IBM, famously said: "Every time
I fire a linguist, the performance of the speech recognizer goes up" (1998).

▶ This statement has a great impact, and of course is very controversial. Fred Jelinek
himself later gave some background explanations at a presentation in 2004.

▶ The statistical methods brought rapid performance improvement to NLP, but it also
encountered bottlenecks quickly.

▶ Once again, there is a desire to introduce linguistics to improve the performance of
the systems. So at this stage, more deep linguistic labeling corpus and more complex
methods of combining statistics and linguistics have emerged.

15 total: 30



NLP Methods Combining Statistics and Linguistics

(a) S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

(b)

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Figure 5: (a) A conventional parse tree as found for example in the Penn treebank.
(b) A lexicalized parse tree for the same sentence. Note thateach non-terminal in
the tree now includes a single lexical item. For clarity we mark the head of each
rule with an overline: for example for the ruleNP → DT NN the childNN is the
head, and hence theNN symbol is marked asNN.

9

rules may describe the transformation of does not
into ne ... pas in French. A particular instance may
look like this:

VP(AUX(does), RB(not), x0:VB) → ne, x0, pas

lhs(ri) can be any arbitrary syntax tree fragment.
Its leaves are either lexicalized (e.g. does) or vari-
ables (x0, x1, etc). rhs(ri) is represented as a se-
quence of target-language words and variables.

Now we give a brief overview of how such
transformational rules are acquired automatically
in GHKM.1 In Figure 1, the (π, f ,a) triple is rep-
resented as a directed graph G (edges going down-
ward), with no distinction between edges of π and
alignments. Each node of the graph is labeled with
its span and complement span (the latter in italic
in the figure). The span of a node n is defined by
the indices of the first and last word in f that are
reachable from n. The complement span of n is
the union of the spans of all nodes n′ in G that
are neither descendants nor ancestors of n. Nodes
of G whose spans and complement spans are non-
overlapping form the frontier set F ∈ G.

What is particularly interesting about the fron-
tier set? For any frontier of graph G containing
a given node n ∈ F , spans on that frontier de-
fine an ordering between n and each other frontier
node n′. For example, the span of VP[4-5] either
precedes or follows, but never overlaps the span of
any node n′ on any graph frontier. This property
does not hold for nodes outside of F . For instance,
PP[4-5] and VBG[4] are two nodes of the same
graph frontier, but they cannot be ordered because
of their overlapping spans.

The purpose of xRs rules in this framework is
to order constituents along sensible frontiers in G,
and all frontiers containing undefined orderings,
as between PP[4-5] and VBG[4], must be disre-
garded during rule extraction. To ensure that xRs
rules are prevented from attempting to re-order
any such pair of constituents, these rules are de-
signed in such a way that variables in their lhs can
only match nodes of the frontier set. Rules that
satisfy this property are said to be induced by G.2

For example, rule (d) in Table 1 is valid accord-
ing to GHKM, since the spans corresponding to

1Note that we use a slightly different terminology.
2Specifically, an xRs rule ri is extracted from G by taking

a subtree γ ∈ π as lhs(ri), appending a variable to each
leaf node of γ that is internal to π, adding those variables to
rhs(ri), ordering them in accordance to a, and if necessary
inserting any word of f to ensure that rhs(ri) is a sequence of
contiguous spans (e.g., [4-5][6][7-8] for rule (f) in Table 1).
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Figure 1: Spans and complement-spans determine what
rules are extracted. Constituents in gray are members of the
frontier set; a minimal rule is extracted from each of them.

(a) S(x0:NP, x1:VP, x2:.) → x0, x1, x2

(b) NP(x0:DT, CD(7), NNS(people)) → x0, 7º
(c) DT(these) →Ù
(d) VP(x0:VBP, x1:NP) → x0, x1

(e) VBP(include) →-�ì
(f) NP(x0:NP, x1:VP) → x1,�, x0

(g) NP(x0:NNS) → x0

(h) NNS(astronauts) →�*,X
(i) VP(VBG(coming), PP(IN(from), x0:NP)) →eê, x0

(j) NP(x0:NNP) → x0

(k) NNP(France) →Õý
(l) .(.) → .

Table 1: A minimal derivation corresponding to Figure 1.

its rhs constituents (VBP[3] and NP[4-8]) do not
overlap. Conversely, NP(x0:DT, x1:CD:, x2:NNS)
is not the lhs of any rule extractible from G, since
its frontier constituents CD[2] and NNS[2] have
overlapping spans.3 Finally, the GHKM proce-
dure produces a single derivation from G, which
is shown in Table 1.

The concern in GHKM was to extract minimal
rules, whereas ours is to extract rules of any arbi-
trary size. Minimal rules defined over G are those
that cannot be decomposed into simpler rules in-
duced by the same graph G, e.g., all rules in Ta-
ble 1. We call minimal a derivation that only con-
tains minimal rules. Conversely, a composed rule
results from the composition of two or more min-
imal rules, e.g., rule (b) and (c) compose into:

NP(DT(these), CD(7), NNS(people)) →Ù, 7º

3It is generally reasonable to also require that the root n
of lhs(ri) be part of F , because no rule induced by G can
compose with ri at n, due to the restrictions imposed on the
extraction procedure, and ri wouldn’t be part of any valid
derivation.
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IP
“Bush .. Sharon”

NP
“Bush⊔ with Sharon”

NPB
“Bush”

Bùsh́ı

CC
“with”

yǔ

NPB
“Sharon”

Sh̄alóng

VPB
“held .. meeting”

VV
“held”

jǔx́ıng

AS
“held”

le

NPB
“a meeting”

hùıtán

(minimal) rules extracted
IP (NP(x1:NPBx2:CCx3:NPB)x4:VPB)

→ x1 x4 x2 x3

CC (yǔ)→ with
NPB (Bùsh́ı)→ Bush

NPB (Sh̄alóng)→ Sharon

VPB (VV( jǔx́ıng) AS(le) x1:NPB)
→ heldx1

NPB (hùıtán)→ a meeting

Bush held a meeting with Sharon

Figure 3: Tree-based rule extraction (Galley et al., 2004).Each non-leaf node in the tree is annotated with its target
span (below the node), where⊔ denotes a gap, and non-faithful spans are crossed out. Shadowed nodes areadmissible,
with contiguous and faithful spans. The first two rules can be“composed” to form ruler1 in Figure 1.

IP0, 6

“Bush .. Sharon”
e2

NP0, 3

“Bush⊔ with Sharon”

e3

NPB0, 1

“Bush”

Bùsh́ı

CC1, 2

“with”

yǔ

VP1, 6

“held .. Sharon”

PP1, 3

“with Sharon”

P1, 2

“with”

NPB2, 3

“Sharon”

Sh̄alóng

VPB3, 6

“held .. meeting”

VV3, 4

“held”

jǔx́ıng

AS4, 5

“held”

le

NPB5, 6

“a meeting”

hùıtán

e1

extra (minimal) rules extracted
IP (x1:NPB x2:VP)→ x1 x2

VP (x1:PP x2:VPB)→ x2 x1

PP (x1:P x2:NPB)→ x1 x2

P (yǔ)→ with

Bush held a meeting with Sharon

Figure 4: Forest-based rule extraction. Solid hyperedges correspond to the 1-best tree in Figure 3, while dashed hyper-
edges denote the alternative parse interpretingyǔ as a preposition in Figure 5.

More formally, a (tree-to-string)translation rule
(Galley et al., 2004; Huang et al., 2006) is a tuple
〈lhs(r), rhs(r), φ(r)〉, where lhs(r) is the source-
side tree fragment, whose internal nodes are la-
beled by nonterminal symbols (like NP and VP),
and whose frontier nodes are labeled by source-
language words (like “yǔ”) or variables from a set
X = {x1, x2, . . .}; rhs(r) is the target-side string
expressed in target-language words (like “with”) and
variables; andφ(r) is a mapping fromX to nonter-

minals. Each variablexi ∈ X occursexactly oncein
lhs(r) andexactly oncein rhs(r). For example, for
rule r1 in Figure 1,

lhs(r1) = IP ( NP(x1 CC(yǔ) x2) x3),
rhs(r1) = x1 x3 with x2,

φ(r1) = {x1: NPB, x2: NPB, x3: VPB}.

These rules are being used in the reverse direction of
the string-to-tree transducers in Galley et al. (2004).
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Influence of Linguistics to Artificial Intelligence

The Early AI Stage

The Symbolic AI Stage

The Statistical AI Stage

The Neural AI Stage

Content



Timeline - The Neural AI Stage

1950 Turing Test

1954 First machine translation experiment

1957 Basic idea of distributional semantic (Firth)

1957 Syntactic Structure (Chomsky), transformational generative grammar

1959 The Foundation of Structural Syntax (Tesnière), dependent grammar

1962 Dartmouth Conference, Birth of Artificial Intelligence

1965 Aspects of Syntactic Theory (Chomsky)

1966 ALPAC Report, Funds in MT cut drastically

1967 Brown Corpus

1970 1970s-1980s Expert systems

1971 PoS tagging

1978 ARIAN78 Analysis-Transfer-Generation MT System

1984 CYC Encyclopedia Knowledge Base Project

1985 WordNet

1985 GPSG

1987 HPSG and LFG

1987 1st MUC, Information Extraction

1992 Penn Treebank

1993 Penn Discourse Treebank

1994 SCFG

1994 IBM SMT Models 1-5

1997 IBM Deep Blue Beated Kasparov

2000 FrameNet

2002 Semantic Role Labeling Task

2003 Phrase-based SMT

2005 PropBank

2006 Syntax-based SMT

2007 Dbpedia, Freebase

2011 IBM Watson beated Human in Jeopardy

2013 Word Embedding

2013 Seq2Seq Neural MT

2016 AlphaGo beated Lee Sedol

2017 Transformer Model

2018 Pre-trained Models: BERT, GPT etc.

2020 GPT-3 175B LLM

2022 ChatGPT17 total: 30



Syntactic Ability of Neural LMs

▶ We propose to mask a word in
BERT to observe the change of
the hidden state of other words
to predict the influence of one
word on another. We find that
the word influence matrix
actually contains rich syntactic
structure information.

▶ Recently, West Lake University
and other institutions have
found that only using the output
layer hidden state of the LLMs,
three simple methods can
obtain the syntax analysis
accuracy close to SotA, with
very good cross-domain
performance.
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Figure 1: Heatmap of the impact matrix for the sen-
tence “For those who follow social media transitions
on Capitol Hill, this will be a little different.”

3 Visualization with Impact Maps

Before we discuss specific syntactic phenomena,
let us first analyze some example impact matri-
ces derived from sample sentences. We visual-
ize an impact matrix of a sentence by displaying
a heatmap. We use the term “impact map” to refer
to a heatmap of an impact matrix.

Setup. We extract impact matrices by feed-
ing BERT with 1,000 sentences from the English
Parallel Universal Dependencies (PUD) treebank
of the CoNLL 2017 Shared Task (Zeman et al.,
2017). We follow the setup and pre-processing
steps employed in pre-training BERT. An example
impact map is shown in Figure 1.

Dependency. We notice that the impact map
contains many stripes, which are short series of
vertical/horizontal cells, typically located along
the diagonal. Take the word “different” as an ex-
ample (which is illustrated by the second-to-last
column in the impact matrix). We observe a clear
vertical stripe above the main diagonal. The inter-
pretation is that this particular occurrence of the
word “different” strongly affects the occurrences
of those words before it. These strong influences
are shown by the darker-colored pixels seen in the
second last column of the impact map. This ob-
servation agrees with the ground-truth dependency
tree, which selects “different” as the head of all
remaining words in the phrase “this will be a lit-
tle different.” We also observe similar patterns on
“transitions” and “Hill”. Such correlations lead us
to explore the idea of extracting dependency trees
from the matrices (see Section 4.1).

follow social media transitions on Capitol Hill

Figure 2: Part of the constituency tree.

Constituency. Figure 2 shows part of the con-
stituency tree of our example sentence generated
by Stanford CoreNLP (Manning et al., 2014). In
this sentence, “media” and “on” are two words
that are adjacent to “transitions”. From the tree,
however, we see that “media” is closer to “transi-
tions” than “on” is in terms of syntactic distance.
If a model is syntactically uninformed, we would
expect “media” and “on” to have comparable im-
pacts on the prediction of “transitions”, and vice
versa. However, we observe a far greater impact
(darker color) between “media” and “transitions”
than that between “on” and “transitions”. We will
further support this observation with empirical ex-
periments in Section 4.2.

Other Structures. Along the diagonal of the
impact map, we see that words are grouped into
four contiguous chunks that have specific intents
(e.g., a noun phrase – on Capitol Hill). We also
observe that the two middle chunks have relatively
strong inter-chunk word impacts and thus a bond-
ing that groups them together, forming a larger
verb phrase. This observation suggest that BERT
may capture the compositionality of the language.

In the following sections we quantitatively eval-
uate these observations.

4 Syntactic Probe

We start with two syntactic probes – dependency
probe and constituency probe.

4.1 Dependency Probe

With the goal of exploring the extent dependency
relations are captured in BERT, we set out to an-
swer the following question: Can BERT outper-
form linguistically uninformed baselines in unsu-
pervised dependency parsing? If so, to what ex-
tent?

We begin by using the token-level perturbed
masking technique to extract an impact matrix F
for each sentence. We then utilize graph-based al-
gorithms to induce a dependency tree from F , and
compare it against ground-truth whose annotations
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Figure 5: Impact of decoding strategy.

methods in the fine-tuning setting, the reason can
be two folds: 1) transition-based constituent pars-
ing requires the implicit maintenance of a stack
and a buffer, thus is hard for LLMs to learn. 2)
transition-based and span-based linearization are
longer than bracket-based one, thus suffering more
from error propagations. In the subsequent exper-
iments, we opt for the bracket-based linearization
strategy for comparison, as it is relatively shorter
and generally delivers better performance than the
transition-based method.

We then study the impact of different decod-
ing strategies during inference. Figure 5 compares
the performance of greedy search and beam search
with beam sizes ranging from 2 to 5, on the de-
velopment dataset of the PTB. In general, the de-
coding strategy does not impact the parsing per-
formance. In particular, for LLaMA-7B, greedy
search yields an F1 score of only 0.1 lower than
beam search with a beam size of 5. This suggests
that the decoding strategy is not the bottleneck for
LLM-based constituency parsing. Moreover, the
impact of the decoding strategy on LLaMA-33B
has a similar trend compared to LLaMA-7B.11

5.2 The Capacity of LLMs on Constituency
Parsing

To study the full potential of LLMs on con-
stituency parsing, we fine-tune LLMs on the full
training dataset of PTB and compare the perfor-
mance of LLMs with the state-of-the-art method.
Table 2 presents the results of different systems on
the PTB test set. Among all LLM-based methods,
LLaMA-65B achieves the highest result, with an
F1 score of 95.90. Compared with sequence-based
baselines, fine-tuned LLMs yield greatly superior
results. Notably, LLaMA-65B gives an improve-
ment of approximately 2.2 F1 score over GPT-2.
This observation suggests that LLMs can substan-

11We do not report the results of LLaMA-65B since it ex-
ceeds GPU memory limit when beam size ≥ 4.

Model LR LP F1

Non-
LLM

SEPar♡ 95.56 95.89 95.72
SAPar♡ 96.19 96.61 96.40
TGCN♣ 96.13 96.55 96.34
LSTM⋆ - - 88.30
Transformer⋆ - - 91.20
GPT-2⋆ 93.68 93.79 93.73
OPT-6.7B⋆ 94.63 94.52 94.58

LLM

LLaMA-7B⋆ 95.50 95.12 95.31
LLaMA-13B⋆ 95.73 95.25 95.49
LLaMA-33B⋆ 96.05 95.56 95.81
LLaMA-65B⋆ 96.09 95.72 95.90

LLM[IT] Alpaca-7B⋆ 95.40 94.99 95.20
Vicuna-7B⋆ 95.37 94.93 95.16

Table 2: Fine-tuning results on PTB. LR: labeled
recall. LP: labeled precision. ♡ means chart-
based models. ♣ means transition-based models.
⋆ means sequence-based models. [IT] means
instruction-tuned LLMs. The best results among
all methods are bolded and the best sequence-
based results are underlined.

tially boost the performance of sequence-based
constituency parsers.

Compared with the state-of-the-art chart-based
and transition-based systems, LLaMA-65B gives
competitive results. Specifically, LLaMA-65B
outperforms the SEPar parser’s 95.72 F1 score,
narrowing the gap between the sequence-based
parser and chat-based parser. This indicates
that the LLM-based parser can serve as a strong
backbone for constituency parsing. LLaMA-65B
produces relatively lower results compared with
SAPar and TGCN, the reason is that SAPar and
TGCN employ external mechanisms to learn local
features.

Regarding the model scale, LLaMA-13B im-
proves LLaMA-7B by approximately 0.18 in F1
score, while LLaMA-33B surpasses LLaMA-13B
by 0.32 in F1 score. Moreover, LLaMA-65B fur-
ther delivers a 0.09 F1 score improvement over
LLaMA-33B. These results suggest that increas-
ing the model scale can still bring performance im-
provements even with billions of parameters.

As shown in the last two rows of Table 2, both
instruction-tuned models deliver slightly lower
performance than vanilla LLMs. This indicates
that instruction-tuning cannot benefit constituency
parsing under the fine-tuning setting. The reason
can be that instruction-tuning tasks primarily fo-
cus on semantics, resulting in forgetting of con-

18 total: 30



Is linguistics useful for AI in the age of LLMs?

▶ Pre-trained LMs, especially LLMs, exhibit such strong NLU and NLG capabilities, so that we no
longer resort to linguistic-based methods to improve NLP performance.

▶ Although LLMs no longer require direct linguistic knowledge in model design, we believe that
linguistics can still play an important role in the era of LLMs:

▶ Data engineering of the LLMs: The LLM pre-training data and instruction fine-tuning data play a
decisive role in the capability of LLMs. However, the data engineering of LMs is still in the stage of
experiential exploration and lacks clear theoretical guidance. Linguistics should play a role in this
respect.

▶ Evaluation of LLMs: The ability evaluation of LLMs is multi-dimensional, and the evaluation of
language ability is also an important part of it. Linguistics should play a role in it.

▶ Application of LLMs: The capability of LLMs depends more and more on the design of prompt
words. Prompt word engineering has become an important means of LLM application, especially
when agents based on LLMs are used to solve complex problems. Linguistics can help us a lot in
this respect, which requires the comprehensive use of complex capabilities such as planning,
memory, reflection, search and tool use of large language models.

▶ Multi-agent application based on LLMs: Multi-agent has unique advantages in handling some
complex problems. However, how multi-agents directly communicate and collaborate is an important
constraint to the problem-solving capability of multi-agents. Linguistics should play an important role.

19 total: 30



Common Sense Reasoning with LLMs Based on Situational
Semantics

SMART: A Situation Model for Algebra Story Problems via Attributed Grammar

Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang, Song-Chun Zhu
University of California, Los Angeles, USA.

yininghong@cs.ucla.edu, {liqing, nikepupu, danielciao, huangsiyuan}@ucla.edu, sczhu@stat.ucla.edu

Abstract

Solving algebra story problems remains a challenging task in
artificial intelligence, which requires a detailed understand-
ing of real-world situations and a strong mathematical rea-
soning capability. Previous neural solvers of math word prob-
lems directly translate problem texts into equations, lacking
an explicit interpretation of the situations, and often fail to
handle more sophisticated situations. To address such lim-
its of neural solvers, we introduce the concept of a situation
model, which originates from psychology studies to represent
the mental states of humans in problem-solving, and propose
SMART, which adopts attributed grammar as the representa-
tion of situation models for algebra story problems. Specif-
ically, we first train an information extraction module to ex-
tract nodes, attributes, and relations from problem texts and
then generate a parse graph based on a pre-defined attributed
grammar. An iterative learning strategy is also proposed to
improve the performance of SMART further. To rigorously
study this task, we carefully curate a new dataset named
ASP6.6k. Experimental results on ASP6.6k show that the pro-
posed model outperforms all previous neural solvers by a
large margin while preserving much better interpretability. To
test these models’ generalization capability, we also design an
out-of-distribution (OOD) evaluation, in which problems are
more complex than those in the training set. Our model ex-
ceeds state-of-the-art models by 17% in the OOD evaluation,
demonstrating its superior generalization ability.

Introduction
Algebra Story Problems, depicted by Hinsley, Hayes, and
Simon (1977) as “twentieth-century fables”, remain a crit-
ical challenge in modern artificial intelligence. An algebra
story problem typically describes a real-world situation and
inquires about an unknown fact in the situation. It goes be-
yond arithmetic since one has to first comprehend the situ-
ation, recognize the goal in the problem, and then develop
a solution for it (Nathan, Kintsch, and Young 1992). Psy-
chology studies (Bjork and Bowyer-Crane 2013; Abedi and
Lord 2001) also indicate that algebra story problems can
serve as a test of children’s cognitive skills to perform arith-
metic reasoning on real-world tasks. However, although al-
gebra story problems are distinguished per se, related works

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The two cars A and B are 20 kilometers apart. Car B is in front 
and Car A is behind. The two cars depart at the same time. Car A 
catches up with Car B after 2 hours. Car B is traveling 50 
kilometers per hour and Car A is traveling at what speed every 
hour?
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Figure 1: The process of human solving algebra story prob-
lems: We first hallucinate a situation model from the text and
then perform arithmetic reasoning on the situation model to
compute an answer. If we fail to generate a correct solution,
we can adjust our situation model accordingly.

from the community of artificial intelligence and natural lan-
guage processing often mix them with other types of prob-
lems, such as number problems and geometry problems, into
one whole task called Math Word Problems (MWPs) (Wang,
Liu, and Shi 2017a; Huang et al. 2016; Amini et al. 2019)

Recent works on Math Word Problems (Wang, Liu, and
Shi 2017a; Huang et al. 2018a; Wang et al. 2018; Xie and
Sun 2019; Hong et al. 2021) focused on using end-to-end
neural networks (e.g., Seq2Seq, Seq2Tree) to directly trans-
late a problem text into an expression, which is then exe-
cuted to get the final answer. Although they seem to obtain
satisfying performance, such end-to-end neural models suf-
fer from the following drawbacks:
• Lack of interpretability. The expressions generated by

neural networks are hard to interpret without the in-
termediate problem-solving process. An exemplary ex-
pression from Figure 3 is “(24+60)/[1-(1-(2/5))*(3/10)-
(2/5)*(3/4)-(2/5)]”, which makes no sense to humans,
even though it generates the correct answer.

• Lack of generalization ability. These neural solvers usu-
ally fail in scenarios that are more sophisticated than those
in training.
To address these issues in current research on Math Word

Problems, we make the following efforts in this work.
First, we curate a new benchmark named ASP6.6k, which
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Problem Type Sample Problem
Task The engineering team built a viewing trail and completed 30% of the full length in the first week and 45% of the full

length in the second week. 150 meters in two weeks, how long is the length of this trail?
Motion Mingming’s family went to travel, they took a 14-hour train ride, and then a 5-hour car ride before reaching their

destination. It is known that the speed of the train is 120 kilometers/hour and the speed of the car is 60 kilometers/hour.
How long is this journey?

Relation Xiaogang’s weight is 28.4 kg, Xiaoqiang’s weight is 1.4 times that of Xiaogang, Xiaoqiang’s weight = how many
kilograms?

Price The school bought 45 sets of desks and chairs at 128 yuan per desk and 52 yuan per chair. How much did it spend?

Table 2: An example of each problem type.

Rate: 65 Amount: 6

City A and City B

Car 

travels for 6 hours 
on the first day

travels (1/3) 
...the first day

Total: x

Total: x1
Rate: 65
Amount: 6

Total: x2
Rate: y2
Amount: z2 

Problem
  A car travels from 

city A to city B. It 
travels for 6 
hours on the first 
day, with a speed 
of 65 kilometers an 
hour. On the 
second day, it 
travels (1/3) of the 
distance he 
travels the first 
day. Then it 
arrives. What is the 
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Figure 2: Overview of our SMART model. The Named Entity Recognition (NER) module extracts the spans of nodes, attributes,
as well as relations from the text, and construct a parse graph using Attributed Grammar. The Relation Extraction module uses
the relation spans and the parse graph already constructed to embed some relations into the parse graph. In the updated graph
parser, Relation Extraction corresponds to Seq2Seq. The relations are then executed to get the final answer. If the answer is
correct, it is added to the buffer of pseudo-gold parse graphs to train NER and Seq2Seq. If not, it is added to the failure set to
be updated in the following iterations.

Grammar Parsing
The construction of the situation model for an algebra story
problem is equivalent to parsing the problem text into a parse
graph. Formally, given the problem x and the attributed
grammar G, the parsing process is formulated as:

pg∗ = arg max
pg∈L(G)

p(pg | x), (1)

where L(G) denotes the language of the attributed grammar.
The probability of a parse graph pg given x can be written
as a joint probability of its nodes Vpg , attributes Apg and
relations Epg:

p(pg | x) = p(Vpg, Apg, Epg|x) (2)
= p(Vpg|x) · p(Apg|x) · p(Epg|x) (3)

Here we assume the independence of these nodes, attributes,
and relations to simplify our model and leave the exploration
of their dependency for future works.

The extraction of nodes, attributes and relations is
achieved by a three-step process.

First, we define seven categories of entities: nodes
(WORLD, AGENT, EVENT), attributes (RATE, AMOUNT,

TOTAL), REL (which denotes a text span that indicates rela-
tion). We train a named entity recognition (NER) system to
recognize these entities from the text. Specifically, we have
one NER model to extract the attributes, and another one for
the extraction of the nodes and REL. We use Nested NER
(Straková, Straka, and Hajic 2019) for the second model.
We use BERT-chinese-base pre-trained model and fine-tune
it on our NER task. We then have:

p(Vpg|x) =
1

|Vpg|
∑

w∈Vpg

pner(w) (4)

p(Apg|x) =
1

|Apg|
∑

w∈Apg

pner(w) (5)

where |Vpg| is the length of a node span, |Apg| is the length
of an attribute span, and w is a word in the node or attribute
span. pner(w) is the probability of a word being labelled as
a specific category.

Second, we connect these nodes and attributes into a parse
graph based on two distances: the word distance between
two nodes in the problem text, and the distance (number of
links) between them in the dependency parse. Some con-
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Abstract
Current evaluations of commonsense reason-
ing in LLMs are hindered by the scarcity of
natural language corpora with structured an-
notations for reasoning tasks. To address this,
we introduce KnowLogic, a benchmark gener-
ated through a knowledge-driven synthetic data
strategy. KnowLogic integrates diverse com-
monsense knowledge, plausible scenarios, and
various types of logical reasoning. One of the
key advantages of KnowLogic is its adjustable
difficulty levels, allowing for flexible control
over question complexity. It also includes fine-
grained labels for in-depth evaluation of LLMs’
reasoning abilities across multiple dimensions.
Our benchmark consists of 3,000 bilingual
(Chinese and English) questions across var-
ious domains, and presents significant chal-
lenges for current LLMs, with the highest-
performing model achieving only 69.57%. Our
analysis highlights common errors, such as
misunderstandings of low-frequency common-
sense, logical inconsistencies, and overthink-
ing. This approach, along with our benchmark,
provides a valuable tool for assessing and en-
hancing LLMs’ commonsense reasoning capa-
bilities and can be applied to a wide range of
knowledge domains. Our data and code can
be found at https://github.com/pokerwf/
KnowLogic.

1 Introduction

Reasoning is a higher cognitive function that in-
volves analyzing, inducting, and deducing new in-
formation based on existing knowledge. It plays
a fundamental role in human intelligence. Evalu-
ating the commonsense reasoning ability of large
language models (LLMs) is a crucial area of re-
search in AI. This ability significantly influences
LLMs’ decision-making capabilities and is vital
for advancing towards human-like intelligence in
artificial general intelligence (AGI).

*Corresponding author.

The massive natural language corpora on the
Internet inherently lack sufficiently dense common-
sense knowledge and logical reasoning data, as
such information typically exists in implicit forms
rather than explicit expressions within natural texts.
This inherent deficiency results in the congenital
weakness of LLMs’ commonsense reasoning capa-
bilities. To effectively evaluate LLMs’ common-
sense reasoning abilities, it is imperative to employ
artificially synthesized reasoning texts embedded
with high-density commonsense information. The
primary challenge in this endeavor lies in ensur-
ing both the accuracy of commonsense knowledge
representation and the reliability of long-range rea-
soning chains.

Previous commonsense reasoning datasets typ-
ically relied on human annotation (Talmor et al.,
2019, 2022; Boratko et al., 2020; Geva et al., 2021;
Wei et al., 2024), template rules (Weston et al.,
2015; Wang and Zhao, 2023; Parmar et al., 2024) or
LLMs (Bai et al., 2024; Sakai et al., 2024; Sprague
et al., 2024) for data generation. However, the lack
of automation capability makes manual annotation
challenging for building large-scale datasets, while
template rules lead to a lack of diversity for gen-
erating varied texts, and LLMs struggle to ensure
data quality. Furthermore, these benchmarks lack
fine-grained features, which hinders a detailed anal-
ysis of model performance, and the data generation
process is difficult to precisely control.

To address these issues, we propose a
knowledge-driven synthetic data strategy. This
involves creating a reliable knowledge base that
integrates diverse commonsense knowledge and
scenarios, along with logically rigorous reason-
ing systems capable of controlling the entire in-
ference process to automatically generate accurate
test questions and answers. The items in the knowl-
edge base are annotated with fine-grained features,
which are carried over to the generated data to
support interpretable evaluation. By controlling
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Figure 2: Overall process of data synthesis

Domain Contextual Attribute Num of Values Example Values

Space

Scenarios 4 centrifugal hexagon, three rows two columns, etc.
Properties 2 human, natural object
Relations 14 up, down, left, right, east, west, etc.
Number of Slots 3 4, 5, 6

Time

Scenarios 2 linear scenario, cyclic scenario
Properties 4 time of occurrence, start time, end time, duration
Relations 8 earlier, same duration, etc.
Events 74 get married, play badminton, etc.

Social
Scenarios 2 social relations, kinship relations
Properties 5 surname, first name, gender, spouse, related people
Relations 76 father-son, classmates, etc.

Nature

Scenarios 3 farming, zoo ground allocation, items in photos
Entities 633 123 animals, 147 plants, 363 artifacts
Properties 18 color, shape, number of legs, etc.
Relations 11 same color, more legs, etc.

Table 4: Commonsense-related attributes involved in the questions

ence Engine, which consists of four stages.

Step 1: Scenario Definition This first step es-
tablishes the scenario and enhances its presenta-
tion. It involves selecting entities/events from the
knowledge base and integrating them into a sce-
nario framework. Crucially, it generates introduc-
tory text for context and applies templates for natu-
ral language transformation of scenario elements.
This combines scenario creation with immediate
linguistic refinement for user-friendliness.

Step 2: Inference Data Generation The second
step is utilising a Reasoner to generate inference
data. The Reasoner generates a fact base by expand-
ing a set of initial facts that describe properties of
the entities or events using the relations and logic
rules associated with the scenario. Fine-grained

features of each fact are recorded during the gen-
eration process to enable in-depth analysis. After
the fact base is completed, the Reasoner adds facts
to a statement set and verifies them step by step.
This process is repeated until the statement set can
uniquely determine the slot of each entity or event.

Step 3: Question Design The tird step is utilising
a Question Generator to design the question. The
Question Generator takes the statement set and the
ground-truth arrangement of entities or events in
the scenario as input and generates different types
of statements to produce different types of ques-
tions.

Detailed workflow of data synthesis is shown in
Appendix B.

(a) General Social Relationship (b) Chinese Family Relationship

Figure 28: Social Scenario Diagram

(a) Four Plots Farmland Scenario
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(b) Family In Four-person Booth Scenario

Figure 29: Enhanced Spatial Scenario Diagram with Entity Properties and Relationships
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Quantitative Linguistics Research Based on Big Data

刘海涛教授计量语言学报告
发布者：xujiajin [发表时间]：2019-06-22 [来源]： [浏览次数]： 1106

2019年6月18日下午16:00-18:00，浙江大学刘海涛教授在110期语料库沙龙上做了题为“大数据时代语言研究的思考与践行”的学术报告。

刘教授以大数据为人类生活创造了前所未有的可量化维度为背景，提出大数据带给语言研究的机遇，计量语言学越来越受到学界青睐。同时，刘教授也向大
家展示了基于语言大数据研究的挑战，即自然语言处理界对于语言学家作用及贡献的争议。随后，刘教授介绍了基于多语言依存距离进行的相关研究，展示了大
数据时代计量语言学研究的最新成果，包括通过对依存距离的计算，揭示认知规律及语言普遍性、生态多样性与语言多样性之间的关系等。

报告后，刘教授与现场师生就大数据分析在商务文本中的应用、翻译文本质量测量、以及依存距离与短时记忆之间关系的研究等问题展开了讨论与互动。

2024/6/27 00:11 刘海涛教授计量语言学报告-北外语料库语言学

https://corpus.bfsu.edu.cn/info/1072/1007.htm 1/1
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Dependency direction as a means of word-order typology:
A method based on dependency treebanks

traditional typology uses a classification into a small number of discrete types. Our approach also provides a method to
measure the dominant order based on real texts. To determine the dominant word order is a very difficult task, in particular,
to distinguish the only order possible or the order that is more frequently used (Dryer, 2008a,b).

Compared with a current study of typology, which is often based on the word order of several special pairs, we extract
from 20 treebanks the percentages of the following dependencies: subject–verb, object–verb and adjective–noun. The result
is shown in Table 4.

Table 4 shows that the method proposed in this study can be used as a typological means, because the results on
dominantword order are very similar with the results in Haspelmath et al. (2005). Therefore, it is reasonable to consider that
a dependency treebank can be used as a database for the study of linguistic typology, and as a tool to provide more precise
and reliable information to decide which word order is more frequently used in a language.

It is noteworthy that Danish has an opposite result to WALS on the AdjN and NAdj (p < 0.01) feature. The problem is
caused by a special annotation scheme in the Danish treebank. For instance, an English prepositional phrase is annotated in
the Danish treebank as the left side of Fig. 6, while the right side is amore often used annotation (Buch-Kromann, 2006:170).

This very unusual annotation scheme alsomakes Danish distant from its sisters in theGermanic subgroup and positions it
wrongly in the language spectrum (or continuum) as shown in Fig. 4.

Fig. 5. 20 languages in Tesnière’s typological classification system.

Table 4
Statistical overview of several special dependencies in 20 languages. VS, SV, VO, OV, NAdj and AdjN are the percentages (the raw figures are included in

parentheses) of the corresponding features in a language;WALS is the dominant word order of the language in Haspelmath et al. (2005). The questionmark

(?) in the WALS shows that the language has no dominant ordera in this feature.

VS SV VO OV NAdj AdjN WALS

Arabic (ara) 61.4 (2153) 38.6 (1351) 91 (5313) 9 (524) 95.9 (3953) 4.1 (167) VS–VO–NAdj

Bulgarian (bul) 18.5 (3,036) 81.5 (13,417) 90.1 (6224) 9.9 (682) 1.6 (180) 98.4 (11,212) ?–VO–AdjN

Catalan (cat) 18.5 (4584) 81.5 (20,221) 85.5 (19,080) 14.5 (3239) 99.2 (1680) 0.8 (14) ?–VO–NAdj

Chinese (chi) 1.3 (19) 98.7 (1400) 98 (1679) 2 (34) 0.4 (2) 99.6 (461) SV–VO–AdjN

Czech (cze) 27.4 (34,273) 72.6 (90,841) 72.9 (74,583) 27.1 (27,735) 8.6 (11,521) 91.4 (122,004) SV–VO–AdjN

Danish (dan) 19.8 (1015) 80.2 (4122) 99.1 (8739) 0.9 (81) 60 (1683) 40 (1124) SV–VO–AdjN

Dutch (dut) 28.7 (13,258) 71.3 (33,000) 82.5 (71,030) 17.5 (15,085) 7.4 (2024) 92.6 (25,207) SV–?–AdjN

Greek (ell) 34.7 (1609) 65.3 (3029) 80.5 (3437) 19.5 (834) 8.4 (400) 91.6 (4345) ?–VO–AdjN

English (eng) 3.2 (1116) 96.8 (33,916) 93.5 (28,219) 6.5 (1959) 2.6 (661) 97.4 (24,801) SV–VO–AdjN

Basque (eus) 20.4 (765) 79.6 (2990) 12.8 (381) 87.2 (2589) 78 (1234) 22 (349) SV–OV–NAdj

German (ger) 33.2 (17,382) 66.8 (34,938) 36.8 (9447) 63.2 (16,237) 37.1 (15,355) 62.9 (26,016) SV–?–AdjN

Hungarian (hun) 26.6 (1764) 73.4 (4862) 47.8 (2600) 52.2 (2843) 2.3 (339) 97.7 (14,239) SV–?–AdjN

Italian (ita) 24.5 (869) 75.5 (2681) 82.3 (2090) 17.7 (451) 60.9 (2374) 39.1 (1523) ?–VO–NAdj

Japanese (jpn) 0 100 (5509) 0 100 (27,553) 0 100 (3820) SV–OV–AdjN

Portuguese (por) 15.7 (1899) 84.3 (10,190) 85.1 (9447) 14.9 (1656) 70.1 (5858) 29.9 (2495) SV–VO–NAdj

Romanian (rum) 21.9 (648) 78.1 (2313) 88.3 (1568) 11.7 (208) 66.9 (2905) 33.1 (1439) SV–VO–NAdj

Slovenian (slv) 38.9 (658) 61.1 (1035) 74.5 (2375) 25.5 (815) 11 (189) 89 (1534) SV–VO–AdjN

Spanish (spa) 21.5 (1107) 78.5 (4032) 77.3 (3417) 22.7 (1006) 98 (431) 2 (9) ?–VO–NAdj

Swedish (swe) 22.7 (4296) 77.3 (14,589) 94.6 (10,411) 5.4 (596) 0.4 (26) 99.6 (6656) SV–VO–AdjN

Turkish (tur) 8.1 (284) 91.9 (3208) 4 (255) 96 (6175) 0.3 (11) 99.7 (3514) SV–OV–AdjN

a In fact, here we use dominant word order unlike the definition in Croft (2002:60), and closer to the understanding of basic word order in Whaley

(1997:100). In other words, it only shows that one of the word order types is more frequent (or dominant) in language use. Dryer (2008a) points out that

WALS also uses the dominant word order in this meaning, to emphasize that priority is given to the criterion of what is more frequent in language use.

Fig. 6. An English phrase annotated by a Danish treebank scheme.
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German and Dutch also raise the following question: how can some special constructions in individual languages be
processed, if the method is aimed at a universal measurement for all languages? For instance, for German and Dutch, the
most important fact about word order is the verb-second order in main clauses and verb-final order in non-main clauses.
Whether and how do we distinguish them in an annotation scheme? To answer this question better, the introduction of two
different dependency relations to distinguish the order seems necessary. However, if this is the case, a new question arises:
how do we compare the individuality of a language with other languages that do not have these specialties? In the future,
perhaps, we should search for some techniques to balance these contrastive relations.

Some differences between two other Germanic languages (e.g. English and German) might be caused by the more fixed
word order of English. This property of English is well reflected in its higher percentage of unbalanced VO/OV and SV/VS than
German. In this approach, free word order can perhaps be revealed by a more balanced percentage between head-final and
head-initial relations, which might be investigated in the future.

The issue of implicational correlations between the ordering of different constituents, whether there are harmonic
correlations, is a major issue for word-order typology. It is, therefore, interesting to explore whether we can carry out this
correlative study based on dependency treebanks. Following are several correlation tests about the relationship between the
order of object and verb and the order of adjective and noun (Dryer, 2008b).

A correlation test between the head-final order in OV/VO dependencies and the head-final order of adjective–noun
dependencies in Germanic languages shows that, when Danish is excluded, four Germanic languages have very good
harmonic correlations (Pearson correlation coefficient of VO and AdjN = 0.999, p-value <0.001), but when Danish is
included, these languages do not correlate in the feature pairs (Pearson coefficient of VO and AdjN = 0.201, p-value = 0.746).

A Pearson correlation test based on a mixed language subgroup was carried out. This subgroup contains the verb–object
and adjective–noun languages that are beyond controversy.11 The result shows that the head-final order in VO dependencies
closely correlates with AdjN dependencies (Pearson coefficient = 0.958, p-value < 0.003).

So, it is possible to find or explore the harmonic correlations by the method proposed here.
To compare the approach proposed in this paper with others, some clustering experiments have been conducted. We are

applying the ‘‘agnes’’ (Agglomerative Nesting) function12 in the statistical software R13 to perform agglomerative
hierarchical clustering analyses (Kaufman and Rousseeuw, 1990), using Euclidean distances and the Average method of
clustering. Fig. 10 shows a cluster tree of 20 languages based on SV–OV–AdjN features.

The agglomerative coefficient14 (AC) of the cluster in Fig. 10 is high (0.82), which indicates a good clustering structure. The
agglomerative coefficients of other feature combinations are also evaluated by the same method and distance measure. The

Fig. 10. Clustering of observations for 20 languages.

11 The subgroup includes Chinese, Czech, Swedish, Bulgarian, Slovenian, and Greek.
12 Agnes proceeds by a series of fusions. At first, each observation is a small cluster by itself. Clusters aremerged until only one large cluster remains, which

contains all the observations. At each stage the two nearest clusters are combined to form one larger cluster. If there are several pairs with minimal

dissimilarity, the algorithm picks a pair of objects at random.
13 www.r-project.org (22.04.09).
14 AC is a dimensionless quantity, varying between 0 and 1. AC close to 1 indicates that a very clear structuring has been found. AC close to 0 indicates that

the algorithm has not found a natural structure.
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Abstract 
We propose and evaluate computational techniques 
for deciphering unknown scripts. We focus on the 
case in which an unfamiliar script encodes a known 
language. The decipherment of a brief document 
or inscription is driven by data about the spoken 
language. We consider which scripts are easy or hard 
to decipher, how much data is required, and whether 
the techniques are robust against language change 
over time. 

1 Introduction 
With surprising frequency, archaeologists dig up 
documents that  no modern person can read. 
Sometimes the written characters are familiar 
(say, the Phoenician alphabet), but the lan- 
guage is unknown. Other times, it is the reverse: 
the written script is unfamiliar but the language 
is known. Or, both script and language may be 
unknown. 

Cryptanalysts also encounter unreadable doc- 
uments, but they try to read them anyway. 
With patience, insight, and computer power, 
they often succeed. Archaeologists and lin- 
guists known as epigraphers apply analogous 
techniques to ancient documents. Their deci- 
pherment work can have many resources as in- 
put, not all of which will be present in a given 
case: (1) monolingual inscriptions, (2) accom- 
panying pictures or diagrams, (3) bilingual in- 
scriptions, (4) the historical record, (5) physical 
artifacts, (6) bilingual dictionaries, (7) informal 
grammars, etc. 

In this paper, we investigate computational 
approaches to deciphering unknown scripts, and 
report experimental results. We concentrate on 
the following case: 

• unfamiliar script 

• known language 

• minimal input (monolingual inscriptions 
only) 

This situation has arisen in many famous 
cases of decipherment--for example, in the Lin- 
ear B documents from Crete (which turned 
out to be a "non-Greek" script for writing an- 
cient Greek) and in the Mayan documents from 
Mesoamerica. Both of these cases lay unsolved 
until the latter half of the 20th century (Chad- 
wick, 1958; Coe, 1993). 

In computational linguistic terms, this de- 
cipherment task is not really translation, but 
rather text-to-speech conversion. The goal of 
the decipherment is to "make the text speak," 
after which it can be interpreted, translated, 
etc. Of course, even after an ancient docu- 
ment is phonetically rendered, it will still con- 
tain many unknown words and strange con- 
structions. Making the text speak is therefore 
only the beginning of the story, but it is a cru- 
cial step. 

Unfortunately, current text-to-speech sys- 
tems cannot be applied directly, because 
they require up front a clearly specified 
sound/writing connection. For example, a sys- 
tem designer may create a large pronunciation 
dictionary (for English or Chinese) or a set of 
manually constructed character-based pronun- 
ciation rules (for Spanish or Italian). But in 
decipherment, this connection is unknown! It is 
exactly what we must discover through analysis. 
There are no rule books, and literate informants 
are long-since dead. 

2 Writing Systems 
To decipher unknown scripts, is useful to under- 
stand the nature of known scripts, both ancient 
and modern. Scholars often classify scripts into 
three categories: (1) alphabetic, (2) syllabic, 
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Abstract

In this paper we propose a method for the
automatic decipherment of lost languages.
Given a non-parallel corpus in a known re-
lated language, our model produces both
alphabetic mappings and translations of
words into their corresponding cognates.
We employ a non-parametric Bayesian
framework to simultaneously capture both
low-level character mappings and high-
level morphemic correspondences. This
formulation enables us to encode some of
the linguistic intuitions that have guided
human decipherers. When applied to
the ancient Semitic language Ugaritic, the
model correctly maps 29 of 30 letters to
their Hebrew counterparts, and deduces
the correct Hebrew cognate for 60% of
the Ugaritic words which have cognates in
Hebrew.

1 Introduction

Dozens of lost languages have been deciphered
by humans in the last two centuries. In each
case, the decipherment has been considered a ma-
jor intellectual breakthrough, often the culmina-
tion of decades of scholarly efforts. Computers
have played no role in the decipherment any of
these languages. In fact, skeptics argue that com-
puters do not possess the “logic and intuition” re-
quired to unravel the mysteries of ancient scripts.1

In this paper, we demonstrate that at least some of
this logic and intuition can be successfully mod-
eled, allowing computational tools to be used in
the decipherment process.

1“Successful archaeological decipherment has turned out
to require a synthesis of logic and intuition . . . that comput-
ers do not (and presumably cannot) possess.” A. Robinson,
“Lost Languages: The Enigma of the World’s Undeciphered
Scripts” (2002)

Our definition of the computational decipher-
ment task closely follows the setup typically faced
by human decipherers (Robinson, 2002). Our in-
put consists of texts in a lost language and a corpus
of non-parallel data in a known related language.
The decipherment itself involves two related sub-
tasks: (i) finding the mapping between alphabets
of the known and lost languages, and (ii) translat-
ing words in the lost language into corresponding
cognates of the known language.

While there is no single formula that human de-
cipherers have employed, manual efforts have fo-
cused on several guiding principles. A common
starting point is to compare letter and word fre-
quencies between the lost and known languages.
In the presence of cognates the correct mapping
between the languages will reveal similarities in
frequency, both at the character and lexical level.
In addition, morphological analysis plays a cru-
cial role here, as highly frequent morpheme cor-
respondences can be particularly revealing. In
fact, these three strands of analysis (character fre-
quency, morphology, and lexical frequency) are
intertwined throughout the human decipherment
process. Partial knowledge of each drives discov-
ery in the others.

We capture these intuitions in a generative
Bayesian model. This model assumes that each
word in the lost language is composed of mor-
phemes which were generated with latent coun-
terparts in the known language. We model bilin-
gual morpheme pairs as arising through a series
of Dirichlet processes. This allows us to assign
probabilities based both on character-level corre-
spondences (using a character-edit base distribu-
tion) as well as higher-level morpheme correspon-
dences. In addition, our model carries out an im-
plicit morphological analysis of the lost language,
utilizing the known morphological structure of the
related language. This model structure allows us
to capture the interplay between the character-
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Figure 1: The Phaistos Disk (c. 1700BC). The 
disk is six inches wide, double-sided, and is the 
earliest known document printed with a form of 
movable type. 

. ~  and (3) log6graphic (Sampson, 1985). 

Alphabetic systems attempt to repre- 
sent single sounds with single characters, 
though no system is "perfect." For exam- 
ple, Semitic alphabets have no characters 
for vowel sounds. And even highly regular 
writing systems like Spanish have plenty of 
spelling variation, as we shall see later. 

Syllabic systems have characters for entire 
syllables, such as "ba" and "shu." Both 
Linear B and Mayan are primarily syllabic, 
as is Japanese kana. The Phaistos Disk 
from Crete (see Figure 1) is thought to be 
syllabic, because of the number of distinct 
characters present. 

Finally, logographic systems have charac- 
ters for entire words. Chinese is often cited 
as a typical example. 

Unfortunately, actual scripts do not fall 
neatly into one category or another (DeFrancis, 
1989; Sproat, forthcoming). Written Japanese 
will contain syllabic kana, alphabetic roomaji, 
and logographic kanji characters all in the same 
document. Chinese characters actually have a 
phonetic component, and words are often com- 
posed of more than one character. Irregular 
English writing is neither purely alphabetic nor 

purely logographic; it is sometimes called mor- 
phophonemic. Ancient writing is also mixed, 
and archaeologists frequently observe radical 
writing changes in a single language over time. 

3 E x p e r i m e n t a l  F r a m e w o r k  

In this paper, we do not decipher any ancient 
scripts. Rather, we develop algorithms and ap- 
ply them to the "decipherment" of known, mod- 
ern scripts. We pretend to be ignorant of the 
connection between sound and writing. Once 
our algorithms have come up with a proposed 
phonetic decipherment of a given document, we 
route the sound sequence to a speech synthe- 
sizer. If a native speaker can understand the 
speech and make sense of it, then we consider 
the decipherment a success. (Note that  the na- 
tive speaker need not even be literate, theoreti- 
cally). We experiment with modern writing sys- 
tems that span the categories described above. 
We are interested in the following questions: 

• Can automatic techniques decipher an un- 
known script? If so, how accurately? 

• What quantity of written text is needed 
for successful decipherment? (this may be 

• quite limited by circumstances) 

• What  knowledge of the spoken language is 
needed? Can it to be extracted automati- 
cally from available resources? What  quan- 
tity of resources? 

• Are some writing systems easier to decipher 
than others? Are there systematic differ- 
ences among alphabetic, syllabic, and lo- 
gographic systems? 

• Are word separators necessary or helpful? 

• Can automatic techniques be robust 
against language evolution (e.g., modern 
versus ancient forms of a language)? 

• Can automatic techniques identify the lan- 
guage behind a script as a precursor to de- 
ciphering it? 

4 A l p h a b e t i c  W r i t i n g  ( S p a n i s h )  

Five hundred years ago, Spaniards invaded 
Mayan lands, burning documents and effec- 
tively eliminating everyone who could read and 
write. (Modern Spaniards will be quick to point 
out that most of the work along those lines 
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Sounds: 

B, D, G, J (ny as in canyon),  L (y as 
in yarn),  T (th as in thin),  a, b, d, e, 
f, g, i, k, l, m, n, o, p, r, rr (trilled), s, 
t, tS (ch as in chin), u, x (h as in hat) 

Characters:  

fi, £, 6, i, o, u, a, b, c, d, e, f, g, h, i, j, 
k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, 
Z 

Figure 2: Inventories of Spanish sounds (with 
rough English equivalents in parentheses) and 
characters.  

had already been carried out  by the Aztecs). 
Mayan hieroglyphs remained uninterpreted for 
many  centuries.  We imagine tha t  if the Mayans 
have invaded Spain, then 20th century Mayan 
scholars might  be deciphering ancient Spanish 
documents  instead. 

We begin with an analysis of Spanish writing. 
The  task of dec ipherment  will be to re-invent 
these rules and apply them to wri t ten docu- 
ments  in reverse. First ,  is necessary to settle 
on the basic inventory of sounds and characters. 
Characters  are easy; we simply tabula te  the dis- 
t inct  ones observed in text.  For sounds, we need 
something t ha t  will serve as reasonable input  to 
a speech synthesizer. We use a Spanish-relevant 
subset of the  Internat ional  Phonet ic  Alphabet  
(IPA), which seeks to  capture  all sounds in all 
languages. Actually, we use an ASCII version 
of the IPA called SAMPA (Speech Assessment 
Methods  Phonet ic  Alphabet) ,  originally devel- 
oped under  E S P R I T  project  1541. There is also 
a public-domain Castillian speech synthesizer 
(called Mbrola) for the Spanish SAMPA sound 
set. Figure 2 shows the sound and character 
inventories. 

Now to spelling rules. Spanish writing is 
clearly not  a one-for-one proposition: 

• a single sound can produce a single charac- 
ter ( a - +  a) 

* a sound can produce two characters (tS 
ch) 

• two sounds can produce a single character 
(k s ---+ x) 

B - + b o r v  
D ~ d  
G ~ g  
J - -+f i  
L--+ l l o r y  
a .--~ a or £ 
b --.~. b or v 
d - - ~ d  
e ---~ e or 6 
f ~ f  
g a g  
i ~ i o r ~  
l ~ l  
m - + m  
n - - + n  
o - m o o r 6  
p - - ~ p  
r - - J r  
t - - r t  
t S ~ c h  
u--~ u or fi 
x - + j  
nothing --+ h 
T (followed by a, o, or u) ~ z 
T (followed by e or i) --+ c or z 
T (otherwise) ~ c 
k (followed by e or i) ~ q u 
k (followed by s) ---+ x 
k (otherwise) ~ c 
rr (at beginning of word) ~ r 
rr (otherwise) ---,, rr 
s (preceded by k) ~ nothing 
s (otherwise) --+ s 

Figure 3: Spanish sound-to-character  spelling 
rules. The  left-hand side of each rule contains a 
Spanish sound (and possible conditions),  while 
t he r i gh t -hand  side contains zero or more Span- 
ish characters.  

• silence can produce a character  (h) 

Moreover, there are ambiguities. The  sound L 
(English y-sound) may be writ ten as either ll or 
y. The  sound i may also produce the character  
y, so the pronunciat ion of y varies according to 
context .  The  sound rr (trilled r) is wri t ten rr in 
the middle of a word and r at the beginning of 
a word. 

Figure 3 shows a sample set of Spanish 
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Sounds: 

B, D, G, J (ny as in canyon),  L (y as 
in yarn),  T (th as in thin),  a, b, d, e, 
f, g, i, k, l, m, n, o, p, r, rr (trilled), s, 
t, tS (ch as in chin), u, x (h as in hat) 

Characters:  

fi, £, 6, i, o, u, a, b, c, d, e, f, g, h, i, j, 
k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, 
Z 

Figure 2: Inventories of Spanish sounds (with 
rough English equivalents in parentheses) and 
characters.  

had already been carried out  by the Aztecs). 
Mayan hieroglyphs remained uninterpreted for 
many  centuries.  We imagine tha t  if the Mayans 
have invaded Spain, then 20th century Mayan 
scholars might  be deciphering ancient Spanish 
documents  instead. 

We begin with an analysis of Spanish writing. 
The  task of dec ipherment  will be to re-invent 
these rules and apply them to wri t ten docu- 
ments  in reverse. First ,  is necessary to settle 
on the basic inventory of sounds and characters. 
Characters  are easy; we simply tabula te  the dis- 
t inct  ones observed in text.  For sounds, we need 
something t ha t  will serve as reasonable input  to 
a speech synthesizer. We use a Spanish-relevant 
subset of the  Internat ional  Phonet ic  Alphabet  
(IPA), which seeks to  capture  all sounds in all 
languages. Actually, we use an ASCII version 
of the IPA called SAMPA (Speech Assessment 
Methods  Phonet ic  Alphabet) ,  originally devel- 
oped under  E S P R I T  project  1541. There is also 
a public-domain Castillian speech synthesizer 
(called Mbrola) for the Spanish SAMPA sound 
set. Figure 2 shows the sound and character 
inventories. 

Now to spelling rules. Spanish writing is 
clearly not  a one-for-one proposition: 

• a single sound can produce a single charac- 
ter ( a - +  a) 

* a sound can produce two characters (tS 
ch) 

• two sounds can produce a single character 
(k s ---+ x) 

B - + b o r v  
D ~ d  
G ~ g  
J - -+f i  
L--+ l l o r y  
a .--~ a or £ 
b --.~. b or v 
d - - ~ d  
e ---~ e or 6 
f ~ f  
g a g  
i ~ i o r ~  
l ~ l  
m - + m  
n - - + n  
o - m o o r 6  
p - - ~ p  
r - - J r  
t - - r t  
t S ~ c h  
u--~ u or fi 
x - + j  
nothing --+ h 
T (followed by a, o, or u) ~ z 
T (followed by e or i) --+ c or z 
T (otherwise) ~ c 
k (followed by e or i) ~ q u 
k (followed by s) ---+ x 
k (otherwise) ~ c 
rr (at beginning of word) ~ r 
rr (otherwise) ---,, rr 
s (preceded by k) ~ nothing 
s (otherwise) --+ s 

Figure 3: Spanish sound-to-character  spelling 
rules. The  left-hand side of each rule contains a 
Spanish sound (and possible conditions),  while 
t he r i gh t -hand  side contains zero or more Span- 
ish characters.  

• silence can produce a character  (h) 

Moreover, there are ambiguities. The  sound L 
(English y-sound) may be writ ten as either ll or 
y. The  sound i may also produce the character  
y, so the pronunciat ion of y varies according to 
context .  The  sound rr (trilled r) is wri t ten rr in 
the middle of a word and r at the beginning of 
a word. 

Figure 3 shows a sample set of Spanish 
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serve regular phonetic relationships between the
two languages (as exemplified by cognates). As a
result, each character in one language will map to
a small number of characters in the other language
(typically one, but sometimes two or three). By
incorporating this structural sparsity intuition, we
can allow the model to focus on on a smaller set of
linguistically valid hypotheses.

Below we give an overview of our model, which
is designed to capture these linguistic intuitions.

5.2 Model Structure
Our model posits that every observed word in the
lost language is composed of a sequence of mor-
phemes (prefix, stem, suffix). Furthermore we
posit that each morpheme was probabilistically
generated jointly with a latent counterpart in the
known language.

Our goal is to find those counterparts that lead to
high frequency correspondences both at the char-
acter and morpheme level. The technical chal-
lenge is that each level of correspondence (char-
acter and morpheme) can completely describe the
observed data. A probabilistic mechanism based
simply on one leaves no room for the other to play
a role. We resolve this tension by employing a
non-parametric Bayesian model: the distributions
over bilingual morpheme pairs assign probabil-
ity based on recurrent patterns at the morpheme
level. These distributions are themselves drawn
from a prior probabilistic process which favors
distributions with consistent character-level corre-
spondences.

We now give a formal description of the model
(see Figure 1 for a graphical overview). There are
four basic layers in the generative process:

1. Structural sparsity: draw a set of indicator
variables λ⃗ corresponding to character-edit
operations.

2. Character-edit distribution: draw a base
distribution G0 parameterized by weights on
character-edit operations.

3. Morpheme-pair distributions: draw a set
of distributions on bilingual morpheme pairs
Gstm, Gpre|stm, Gsuf |stm.

4. Word generation: draw pairs of cognates
in the lost and known language, as well as
words in the lost language with no cognate
counterpart.

G0

word

Gstm

ustm
hstm

upre
hpre

usuf
hsuf

stm stm

Gsuf |stmGpre|stm

!v!λ

Figure 1: Plate diagram of the decipherment
model. The structural sparsity indicator variables
λ⃗ determine the values of the base distribution hy-
perparameters v⃗. The base distribution G0 de-
fines probabilities over string-pairs based solely on
character-level edits. The morpheme-pair distri-
butions Gstm, Gpre|stm, Gsuf |stm directly assign
probabilities to highly frequent morpheme pairs.

We now go through each step in more detail.

Structural Sparsity The first step of the genera-
tive process provides a control on the sparsity of
edit-operation probabilities, encoding the linguis-
tic intuition that the correct character-level map-
pings should be sparse. The set of edit opera-
tions includes character substitutions, insertions,
and deletions, as well as a special end sym-
bol: {(u, h), (ϵ, h), (u, ϵ), END} (where u and h
range over characters in the lost and known lan-
guages, respectively). For each edit operation e we
posit a corresponding indicator variable λe. The
set of character substitutions with indicators set to
one, {(u, h) : λ(u,h) = 1}) conveys the set of
phonetically valid correspondences. We define a
joint prior over these variables to encourage sparse
character mappings. This prior can be viewed as a
distribution over binary matrices and is defined to
encourage rows and columns to sum to low integer
values (typically 1). More precisely, for each char-
acter u in the lost language, we count the number
of mappings c(u) =

∑
h λ(u,h). We then define

a set of features which count how many of these
characters map to i other characters beyond some
budget bi: fi = max (0, |{u : c(u) = i}| − bi).
Likewise, we define corresponding features f ′

i and
budgets b′

i for the characters h in the known lan-
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In this paper we propose a method
for the automatic decipherment of
lost languages. ...
We employ a non-parametric
Bayesian framework to
simultaneously capture both low-level
character mappings and highlevel
morphemic correspondences. ...
When applied to the ancient Semitic
language Ugaritic, the model
correctly maps 29 of 30 letters to
their Hebrew counterparts, and
deduces the correct Hebrew cognate
for 60% of the Ugaritic words which
have cognates in Hebrew.
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Abstract

Originating from China’s Shang Dynasty ap-
proximately 3,000 years ago, the Oracle Bone
Script (OBS) is a cornerstone in the annals
of linguistic history, predating many estab-
lished writing systems. Despite the discov-
ery of thousands of inscriptions, a vast ex-
panse of OBS remains undeciphered, casting
a veil of mystery over this ancient language.
The emergence of modern AI technologies
presents a novel frontier for OBS decipher-
ment, challenging traditional NLP methods
that rely heavily on large textual corpora, a
luxury not afforded by historical languages.
This paper introduces a novel approach by
adopting image generation techniques, specifi-
cally through the development of Oracle Bone
Script Decipher (OBSD). Utilizing a condi-
tional diffusion-based strategy, OBSD gener-
ates vital clues for decipherment, charting a
new course for AI-assisted analysis of ancient
languages. To validate its efficacy, extensive
experiments were conducted on an oracle bone
script dataset, with quantitative results demon-
strating the effectiveness of OBSD. Code and
decipherment results will be made available at
https://github.com/guanhaisu/OBSD.

1 Introduction

Oracle Bone Script (OBS) represents an ancient lan-
guage inscribed on turtle shells and animal bones,
extensively utilized during China’s Shang Dynasty,
a feudal dynasty dating back 3,000 years. The
script not only chronicled the human geography
and daily activities of that period but also encap-
sulates invaluable historical significance, offering
a unique window into the linguistic and cultural
practices of early Chinese civilization. However,
despite the discovery of tens of thousands of frag-
ments of oracle bones, a significant portion of the
characters remain undeciphered (Wang and Deng,
2024), leaving the rest shrouded in mystery. To
date, more than 4,500 Oracle Bone Script (OBS)

characters have been discovered, but only about
1,600 of these have been deciphered and linked
to their modern Chinese counterparts. In modern
Chinese, Unicode includes more than 90,000 Chi-
nese characters, though only approximately 3,500
characters are commonly used in contemporary
Chinese society. This challenge of understanding
the remaining undeciphered OBS characters and
linking them to modern Chinese has attracted sig-
nificant research interest, with attempts being made
to leverage modern AI technologies for the under-
standing of such an ancient language (Zhang et al.,
2022; Jiang et al., 2023; Wang and Deng, 2024;
Guan et al., 2024).

However, the majority of existing methodolo-
gies primarily focus on the recognition and under-
standing of already deciphered OBS (Guo et al.,
2015; Meng et al., 2018; Zhang et al., 2019; Hu,
2023), with the utilization of AI to assist in the de-
cipherment of unknown inscriptions remaining an
underexplored area. This is partly because, unlike
modern languages that can be digitized and stored
as text due to established encoding systems, OBS
lacks a standard input method or encoding scheme,
resulting in its preservation predominantly in the
form of images rather than digital text usually used
in NLP methods. Additionally, since OBS was in-
scribed on turtle shells and animal bones, many
of which have been damaged or fragmented upon
discovery, there is essentially no complete corpus
available. This absence of a comprehensive corpus
severely limits the applicability of language models
that require extensive datasets for training, such as
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and GPT (Brown et al., 2020).

To address the challenges inherent in the deci-
pherment of OBS using conventional NLP method-
ologies, this paper introduces a novel approach by
employing image-based generative techniques for
auxiliary decipherment of OBS. Specifically, we
train a conditional diffusion model that utilizes un-
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Figure 5: The overview pipeline of initial decipherment of OBSD.

and vertical directions with a step size of r. The
initial decipherment model then progressively re-
fines each patch by denoising and sampling.

Algorithm 1 LSS Algorithm

Require: OBS image X̃ , conditional diffusion
model fθ(Xt, X̃, t), dictionary of D overlap-
ping patch locations.

1: XT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: Ωt = 0 and M = 0
4: for d = 1, . . . , D do
5: X

(d)
t = Crop(Pd ◦ Xt) and X̃(d) =

Crop(Pd ◦ X̃) // Pd represents the mask
of the dth patch in the image.

6: Ωt = Ωt + Pd · fθ(X(d)
t , X̃(d), t)

7: M = M + Pd

8: end for
9: Ωt = Ωt ⊘M // ⊘: element-wise division

10: Xt−1 = 1√
αt

(Xt − 1−αt√
1−γt

Ωt) +
√

1 − αtϵt

// ϵt ∼ N (0, I)
11: end for
12: return X0

Unique to our method is the handling of over-
laps between patches. Instead of waiting until the
denoising is complete, we average the overlapped
sections at every timestep t, ensuring a uniform
effect across the shared areas. This continuous av-
eraging at each timestep prevents the formation of
merging artifacts that typically occur when patches
are processed independently. By smoothing tran-
sitions between patches during the sampling, we
avoid edge discrepancies, maintaining the visual co-
herence of the reconstructed image. The sampling
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Figure 6: Modern Chinese characters generated by the
initial decipherment stage, showing numerous artifacts
and deformations as identified by the red circles.

dynamics at each step are defined by Equation 5,
which guides the process toward a seamless and
artifact-free image assembly. Algorithm 1 shows
the pseudocode of LSS. Figure 5 demonstrates the
overview pipeline of initial decipherment.

3.3 Zero-shot Refinement

Despite advancements in generating modern Chi-
nese characters with Localized Structural Sam-
pling, initial decipherment efforts encounter no-
table obstacles, such as structural deformities and
artifacts, highlighted in Figure 6. These issues
stem from the many-to-one training approach used,
where multiple OBS instances are mapped to a sin-
gle modern Chinese character image (see Figure 8),
leading to confusion and inaccuracies in capturing
character evolution, and resulting in artifacts or
incomplete structures due to a limited variety of
modern Chinese character samples.

To overcome these challenges, we propose a
zero-shot refinement strategy that involves training
a model on a diverse collection of modern Chi-
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and vertical directions with a step size of r. The
initial decipherment model then progressively re-
fines each patch by denoising and sampling.

Algorithm 1 LSS Algorithm

Require: OBS image X̃ , conditional diffusion
model fθ(Xt, X̃, t), dictionary of D overlap-
ping patch locations.

1: XT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: Ωt = 0 and M = 0
4: for d = 1, . . . , D do
5: X

(d)
t = Crop(Pd ◦ Xt) and X̃(d) =

Crop(Pd ◦ X̃) // Pd represents the mask
of the dth patch in the image.

6: Ωt = Ωt + Pd · fθ(X(d)
t , X̃(d), t)

7: M = M + Pd

8: end for
9: Ωt = Ωt ⊘M // ⊘: element-wise division

10: Xt−1 = 1√
αt

(Xt − 1−αt√
1−γt

Ωt) +
√

1 − αtϵt

// ϵt ∼ N (0, I)
11: end for
12: return X0

Unique to our method is the handling of over-
laps between patches. Instead of waiting until the
denoising is complete, we average the overlapped
sections at every timestep t, ensuring a uniform
effect across the shared areas. This continuous av-
eraging at each timestep prevents the formation of
merging artifacts that typically occur when patches
are processed independently. By smoothing tran-
sitions between patches during the sampling, we
avoid edge discrepancies, maintaining the visual co-
herence of the reconstructed image. The sampling

Generated 

Results

Ground 

Truth

Figure 6: Modern Chinese characters generated by the
initial decipherment stage, showing numerous artifacts
and deformations as identified by the red circles.

dynamics at each step are defined by Equation 5,
which guides the process toward a seamless and
artifact-free image assembly. Algorithm 1 shows
the pseudocode of LSS. Figure 5 demonstrates the
overview pipeline of initial decipherment.

3.3 Zero-shot Refinement

Despite advancements in generating modern Chi-
nese characters with Localized Structural Sam-
pling, initial decipherment efforts encounter no-
table obstacles, such as structural deformities and
artifacts, highlighted in Figure 6. These issues
stem from the many-to-one training approach used,
where multiple OBS instances are mapped to a sin-
gle modern Chinese character image (see Figure 8),
leading to confusion and inaccuracies in capturing
character evolution, and resulting in artifacts or
incomplete structures due to a limited variety of
modern Chinese character samples.

To overcome these challenges, we propose a
zero-shot refinement strategy that involves training
a model on a diverse collection of modern Chi-
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Abstract

Human language provides a highly efficient communication system, which emerged due to cultural interactions. To
understand this still mysterious process, various interdisciplinary efforts are being made, which refer to evolutionary lin-
guistics, evolutionary game theory or cognitive sciences. A promising approach considers language as a collective phe-
nomenon, which emerges in a population of communicating agents. Numerous papers based on computational
modelling demonstrate ubiquity of spontaneous linguistic synchronization among such agents. The approach got con-
siderable impetus with the introduction of the so-called language game models. Their important feature is the horizontal
nature of interactions between agents, which interplay within one generation only and do not create offspring, to whom
they would transfer their linguistic skills. Recently, more sophisticated approaches are being developed with agents
equipped with some cognitive abilities, employing, for example, reinforcement learning. Such a framework originated
from Lewis signaling game, which was adapted to language evolution with subsequent extensions implementing, for
example, Bayesian inference, neural networks or deep learning. Models with the reinforcement learning may combine
single-generation language games with intergenerational learning, and certainly deserve further studies. The present
paper provides a brief review of this interesting and rapidly developing research field.
� 2022 Elsevier B.V. All rights reserved.

Keywords: Multi-agent systems; Language emergence; Protolanguage; Language evolution

1. INTRODUCTION

The origin and evolution of language, which according to some researchers is the most significant distinguishing fea-
ture of a human, is an intriguing scientific problem and attracts much attention from researchers in multiple disciplines
(Christiansen and Kirby, 2003; Dor et al., 2014; Hurford, 2014; Laks et al., 2008; Oudeyer, 2006; Progovac, 2015;

Reboul, 2017; _Zywiczyński, 2018). A very promising approach considers language as a system, probably having some
adaptive features (Christiansen and Chater, 2016; Pinker and Bloom, 1990), which emerges in a group of communicat-
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dependent. It is only in networks with a strong community structure that a global consensus may not be reached and the
system remains in a multi-language regime (Dall’Asta et al., 2006). Such a clustering of agents may also be induced
dynamically in models using adaptive weighted networks (Lipowska and Lipowski, 2012).

As defined above, success in the minimal naming game completely erases all words but the successful one. In some
other versions of the naming game, less severe inhibition of unsuccessful words can be implemented by means of
weights (Steels and McIntyre, 1998). Such a mechanism may correspond to some degree of memory loss by the com-
municating individuals, which seems to be an essential ingredient of efficient communication systems. We will return to
this point in Section 6.

Research on the naming game is focused mainly on the formation of a vocabulary, i.e., a set of associations between
words and meanings (for instance, objects), but related models have also been used to examine the formation of lin-
guistic categories. Such structures fundamentally determine our perception, recognition and understanding of the sur-
rounding reality. Probably the best-researched example of linguistic categories is colour, as, with amazing universality,
in virtually all languages an essentially infinite multitude of hues is classified into several colours (Lindsey and Brown,
2006; Saunders and van Brakel, 1997; Zaslavsky et al., 2020; Zaslavsky et al., 2019). Due to progress in the cognitive
sciences, a certain mechanism of the creation of categories emerges, according to which they are culture-dependent
conventions shared by a given group. There are several studies analysing computer models in which linguistic cate-
gories emerge (Baronchelli et al., 2010; Komarova et al., 2007; Li et al., 2017; Loreto et al., 2012; Puglisi et al.,
2008), and a satisfactory agreement with empirical data (Cook et al., 2005) can be achieved in some cases.

Interesting implementations of the naming game have also been made in systems of embodied artificial agents
(robots) (Steels and Loetzsch, 2012; Steels, 2015). Various aspects of the dynamics of the naming game have already
been examined, such as the finite memory of agents (Wang et al., 2007), their reputation (Brigatti, 2008), preference in
communication for agents with richer inventories (Lipowska and Lipowski, 2014), or the inclination to use a word shared
by the majority of agents (Lei et al., 2010). A version of the naming game coupled with genetic evolution of a certain trait
of agents leads to an interesting bio-linguistic transition, which is possibly a manifestation of the so-called Baldwin effect
(Lipowski and Lipowska, 2008). The Baldwin effect provides a Darwinian explanation of the genetic fixing of traits that
are learned or developed during the lifespan (Baldwin, 1896). Pinker and Bloom (1990) used the Baldwin effect as an
argument for an explanation of the origins of language and the evolution of a Language Acquisition Device. Deacon
(1997), on the other hand, claimed that Baldwinian inheritance can affect only general cognitive capabilities underlying
language acquisition. Simulations by Munroe and Cangelosi (2002) support Deacon’s hypothesis. Likewise,
Christiansen et al. (2006) suggest that the influence of the Baldwin effect on language formation is most likely restricted
only to its functional features that improve communication abilities. Also in the model of Lipowski and Lipowska (2008),
the genetically evolving trait is a certain language learning ability, which may be interpreted as a functional trait.

We should also mention that the naming game may be used to reproduce some experimental results on the spon-
taneous emergence of social conventions (Centola and Baronchelli, 2015), to detect community structure in complex
networks (Lu et al., 2009; Zhang and Lim, 2010), or to provide a broadcasting protocol in sensor networks (Lu et al.,

Fig. 1. An elementary step in the single-object version of the naming game.

4 D. Lipowska, A. Lipowski / Lingua 272 (2022) 103331

Naming Game

2006; Lu et al., 2008). Some review articles on the naming game, which focus on its statistical-mechanics properties
(Baronchelli, 2016), provide an in-depth discussion of the emergence of a common lexicon and of a shared set of lin-
guistic categories (Loreto et al., 2011), or analyse a Bayesian learning framework and provide an extensive bibliography
(Marchetti et al., 2020), are also available.

3. SIGNALING GAME AND REINFORCEMENT LEARNING

Of course, it would be desirable to study agents that are able to form a language somewhat more complex than a
name of a single object. A natural extension is thus establishing names for several objects. In principle, one can define a
multi-object naming game, where agents use some non-verbal actions (like pointing) to decide which object they are
talking about and whether a communication attempt was successful or not. Basically, this means that agents would
negotiate names for each object independently, and the situation would not be much different from the single-object
version analysed in the previous section (Baronchelli et al., 2006). It is more interesting and ambitious to assume that
agents can recognize the communicated signal (word) and take an appropriate action (e.g., choose an object corre-
sponding to the word). The pioneering work along these lines by Lewis (1969) laid the ground for an important class
of models implementing what is known as a signaling game, which has found numerous applications in economics, evo-
lutionary biology, and also linguistics (Skyrms, 2010). Although the signaling game requires agents with more sophis-
ticated cognitive abilities than those in the naming game, it can be used to model very low-level types of learning and
cognition, such as the signaling behaviour of some type of bacteria (Skyrms, 2010; Fiegna and Velicer, 2003). Most
likely, higher-level learning skills are needed to reproduce the emergence of more complex phenomena in human lan-
guage, such as compositionality or grammar.

In the signaling game, a correct/incorrect recognition of the object should result in some payoff/penalty, which accu-
mulates in the form of weights corresponding to signals or actions (e.g., chosen words or objects). In this way, agents
learn over time which actions are likely to be successful.

The signaling game has been typically studied within a class of learning rules known as reinforcement learning,
which this paper will address exclusively. However, it should be mentioned that the signaling game has also been stud-
ied with a range of other classes of update rules, for example, replicator dynamics (Skyrms, 2010) or imitation dynamics
(Zollman, 2005).

In multi-agent formulations of the signaling game, agents play in turn the role of a speaker or hearer. A speaker
learns which word has the best match with a given (selected) object, say O, and a hearer tries to find the best matching
object when a given word, say W, is communicated by a speaker. When the object indicated by the hearer is the same
as that chosen by the speaker, they achieve a communicative success. As a reward, the speaker and the hearer

Fig. 2. An elementary step in a 2-object version of the signaling game model with reinforcement learning (Lipowska and Lipowski,
2018). The speaker randomly chooses an object (the corresponding section of the inventory is encircled by a dotted line). Using the
relevant weights (in solid circles), the speaker selects one of its words (here: “dnab”). Next the hearer tries to guess the object the
speaker is talking about, taking into account the weights of the communicated word (in circles). If the hearer’s guess is correct, both
agents increase their corresponding weights by 1. Otherwise, the weights remain unchanged.
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Noam Chomsky’s criticism to ChatGPT

The human mind is not, like ChatGPT and its ilk, a lumbering statistical engine for pattern matching, gorging on
hundreds of terabytes of data and extrapolating the most likely conversational response or most probable answer
to a scientific question. On the contrary, the human mind is a surprisingly efficient and even elegant system that
operates with small amounts of information; it seeks not to infer brute correlations among data points but to create
explanations.

Indeed, such programs are stuck in a prehuman or nonhuman phase of cognitive evolution. Their deepest flaw is
the absence of the most critical capacity of any intelligence: to say not only what is the case, what was the case
and what will be the case— that’s description and prediction— but also what is not the case and what could and
could not be the case. Those are the ingredients of explanation, the mark of true intelligence.
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Geoffery Hinton’s criticism to Chomsky’s Linguistics

So there is a whole school of linguistics that comes from Chomsky that thinks that it’s complete nonsense to say
these things understand, that they don’t process language at all in the same way as we do. I think that school is
wrong. I think it’s clear now that neural nets are much better at processing language than anything ever produced
by the Chomsky School of Linguistics. But there’s still a lot of debate about that, particularly among linguists.

[However, in another interview (https://www.youtube.com/watch?v=b_DUft-BdIE) when being asked "One of
Chomsky’s counter arguments to that the language models work the same as that we have sparse input for
our understanding"] We’re probably using some other learning algorithm. And in that sense, Chomsky may be
right that we learn based on less knowledge.
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Interactions between AI and Linguistics in the Era of LLMs

▶ Some important linguistic concepts emerged alongside AI’s birth
▶ Linguistic theories profoundly shaped AI, especially NLP
▶ Symbolic NLP systematically implements linguistic theories through structured resources

(treebanks), analytical algorithms (dependency parsers), and applied systems (MT).
▶ Statistical methods both reduced linguistics’ role and highlighted its value for solving complex

problems
▶ LLMs exhibit dual impacts:

▶ Traditional linguistics motivated methods marginalized
▶ New opportunities: data engineering, evaluation, multi-agent systems

▶ The success of LLMs brings debate about LLMs and Linguistics
▶ AI empowers linguistics with new research tools
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